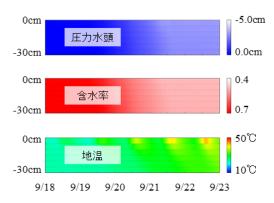
愛媛大学大学院農学研究科 研究シーズ集(研究者情報)

氏名	泉 智揮	専 攻	生物環境学		
		コース	地域環境工学		
職名	准教授	専門分野	水資源システム工学		
メールアドレス	t_izumi@agr.ehime-u.ac.jp	その他連絡先	089-946-9886		
研究課題	地下水浸透流の数値解析に関する研究				
キーワード	浸透流解析,逆解析,農地,地温,用水温				

研究内容:

農業において限りある水資源を有効に利用するために、農地の地中の水分移動をできるだけ正確に把握することが 重要です. 本研究では、地中の水分移動を記述する地下水浸透流モデルの構築や、そのモデルに含まれる未知パラメ 一夕である土壌水理特性の同定手法の開発、および構築したモデルの適用を行っています。

◆ 地下水浸透流モデル


地中の水分移動は地温にも影響を受けるため、水分移動と熱輸送を 同時に解析できる以下のようなモデルを構築しています.

支配方程式:

(水分移動)
$$\phi \frac{\partial S_{w}}{\partial t} + WS_{w}S_{s} \frac{\partial \psi}{\partial t} = -\nabla \cdot \left(-K \left(\nabla h + \frac{\rho_{T} - \rho_{r}}{\rho_{r}} \nabla z \right) \right)$$
(熱輸送) $\frac{\partial \left(C_{h}T_{s} \right)}{\partial t} = -\nabla \cdot \left(-\lambda \nabla T_{s} \right)$

◆ 土壌水理特性の同定(逆解析)

地下水浸透流モデルを解くためには、モデル中の未知パラメータである土壌水理特性を同定する必要があります。この土壌水理特性をシミュレーション最適化法により同定する手法の提案も行っています。

水分移動と熱輸送の連成解析例

低平地水田

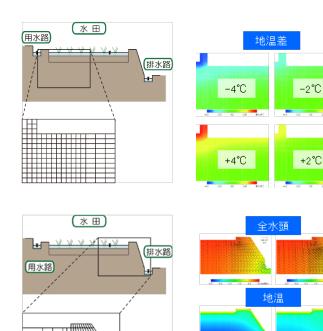
扇状地水田

◆ 応用例

地下水浸透流モデルの応用例として,用水温が水田 地温に及ぼす影響や地質が農地の水分移動や熱輸送 に及ぼす影響について解析を行っています.

(1) 用水温が水田地温に及ぼす影響

右図上段は、基準温度から±2℃, ±4℃の用水温を与えたときの基準温度からの差を示しています。用水路付近や農地の地表面において、用水温によって地温が変化している様子が分かります。


(2)地質が農地の水分移動や熱輸送に及ぼす影響

右図下段は、土質が異なる低平地水田と扇状地水田を対象として、それぞれの水田における全水頭、地温の分布を示しています。全水頭分布から浸透流の流動が分かります。土質の違いが、浸透流の流動や地温に影響を与えることが分かります。

(参考文献)

Izumi, T. and J. Takeuchi, *Journal of Rainwater Catchment Systems*, 19(2), pp.11-17, 2014

Izumi, T., Journal of Rainwater Catchment Systems, 20(2), pp.15-22, 2015

提供可能な資源・技術・その他

数值解析

プロジェクト研究希望テーマ

地下水浸透流に関する研究テーマ